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The results of the first paper in this series are generalized to include spin, permutation 
symmetry, and time dependence. In particular, the question of time invariance of 
localness in the Heisenberg picture is discussed and it is conjectured that an operator 
that is initially local will remain local over time. In order to treat macroscopic systems, 
it is shown that the ensemble decomposition of the previous paper can be used to "coarse- 
grain" configuration space. Finally, a physical interpretation of the ensemble decom- 
position in terms of "redundant macroscopic information" is used to give a derivation 
of the generalized microcanonical average. 

KEY W O R D S :  Local operators; coarse-graining; microcanonical ensemble; founda- 
tions of statistical mechanics. 

1. I N T R O D U C T I O N  

In  the  first pape r  in this series cz) (hereafter  referred to as I),  the idea  was in t roduced  
tha t  measurements  on large systems are actual ly  ensemble averages.  The essence o f  
this idea  is tha t  values o f  observables measured  in dis joint  regions o f  three-space arise 
f rom independent  " p o r t i o n s "  o f  the wave funct ion.  In  o ther  words,  measurements  in 
d is jo int  spat ial  regions are independent ,  a l though this independence is obvious  only  
when the under ly ing conf igurat ion space is examined.  The ma themat i ca l  deve lopments  
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in I are an attempt to give a formal basis for this notion. In particular, it is shown in I 
that expectation values for a pure state ~b have a natural decomposition into an ensem- 
ble average and that the wave functions in this average are derived from the projection 
of ~b on disjoint regions of configuration space. 

To see what connection this formal ensemble has with statistical mechanics, it is 
important to look at the decomposition physically. Since the ensemble of "independent 
systems" arises in confguration space, the physics will be examined at that  level. The 
configuration-space picture of a physical State is a wave function ~b which carries with 
it all of the information relevant to a physical system. However, for  large systems, 
not all of the information in ~b is required since only measurements of a "coarse," 
i.e., macroscopic, nature are made. Indeed, it is plausible that ~b contains a great deal 
of redundant information for macroscopic purposes. By this it is meant that the projec- 
tions of ~b onto disjoint regions of configuration space A and B, i.e., ~:~b and ~:~b, may 
contain the same macroscopic information, but very different microscopic information. ~ 
In other words, for large systems, it is expected that the state ~b itself carries with it an 
ensemble of redundant macroscopic information. Furthermore, it is possible.that for 
certain initial preparations the redundant information carried by ~b is essentially the 
same for all initial states. In this case, all of the initial states would have the same 
macroscopic behavior given by their common redundant "ensemble." 

It is obvious that the ensemble decomposition obtained in I, namely 

= Z e (w, &o3 
J=l 

is 0fjUst the right form to be examined from this point of  vie w. Thus, for some parti- 
t ion of  configuration space {or3}, all the states %-.= ~j~b/[L ~%~b ]I might carry the same 
macroscopic information--in the sense that initially each~q)j has the~ same expectation 
values as ~b. That is, the information contained in the %'s would be redundant infor- 
matioh: This, in fact, is a very general property of quantum systems and a result of 
this form is given below. 

In addition to the macroscopic information contained in the "ensemble" of 
functions {9~}, each function q)~ contains microscopic information. In general, these 
microscopic details are very specific and are not representative of the initial prepara, 
tion of the system. However, for certain preparations it is possible that the microscopic 
information in the ensemble {5oj} is a random sample of the microscopic information 
contained in all the states compatible with the preparation. In other words, for a given 
~b, the ensemble {~.} might embrace all conceivable states of the system compatible 
with the initial preparation. If  the "probabilities" P~ for  such a decomposition were 
equal, then the decomposition would be equivalent to the microcanonical ensemble 
average of Gibbs'. 

In this paper, these ideas are expanded in order to give a new approach for justi- 
fying ensembles. Although the results presented here do not give an explicit justifica- 

2 The possibility of redundant information being contained in a pure state is a direct result of the 
state of the system being a function on configuration space and not a single point in phase space. 
Thus, it does not seem possible to carry out a similar argument in a classical setting. 
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tion of ensembles, they do provide a new point of view from which the problem may 
be understood physically and attacked mathematically. 

2. S Y M M E T R Y  A N D  SPIN 

Before proceeding with the main argument, it is necessary to introduce two 
important physical restrictions into the ensemble decomposition, namely symmetry 
and spin. If  the ensemble decomposition is relevant to physics, it should be easy to 
introduce these complications. 

The symmetrization postulate of quantum mechanics ~2) asserts that the only 
acceptable wave functions are those which are completely symmetric or completely 
antisymmetric for sets of identical particles--the kind of symmetry depending on the 
nature of the particle. The process of subdividing configuration space by partitions 
will not, in general, preserve this symmetry, as is easily seen. For example, 
q~j = ~j~b/l/~,j~b II, where ~b has one of the two symmetry properties. Now, the symme- 
tric projection operator is S = (1/N!) 1/2 Z e  P and the antisymmetric operator is 
S = (1/N!)I/2 Z e  ( _ ) e  p,  where (--)P is the sign of the permutation and the sum is 
over all N! permutations. I f  D represents either S or A, then it is necessary, for sym- 
metry to be preserved, to have D%. = q~j. This means it suffices to have P~% = ~,~ 
for all P and so crj must be symmetric with respect to the origin. 

In order to show the existence of such partitions and for later use, an example of 
such a symmetric partition is given here. To decompose V = V3 • "'" • /"3, where 
V3 is the three-dimensional region available to a particle, consider the open region 
Uz ----- {q ~ V: x z > x2 > "'" > XN}. Then, form the N! disjoint regions U~, = P U t ,  
where P is an element of the symmetric group ~. Thus, 

U~, : {q ~ V: xP1 > xe2 > "'" > XeN} 

and, clearly, Up n Up, = ;g if P ~ P'. Also, A(Up~r Up) = A(V) because the only 
points in V and not in 0e~c Ue come from a countable number of hyperplanes defined, 
for example, by xl = xz �9 

In order to construct ~ . ,  first find a partition (aj*)~=~ of U~. Then, let 
% = 0e~c Paj*. Since a~* is open, %. is open. Also, because gj* n ~r~* = ~ for 
j ~ k and because P ~ *  C Up, it follows that crj n ak = 0~,~c 0 o ~  Pa~* n Q ~ *  = 
for j ~ k. Finally, 

J O~ J OE~ j O~ 

N!  A . ( U (7]*) = N!  ~(U1) : J~(V) 
g / 

where the third and sixth equalities follow from the invariance of Lebesgue measure 
under coordinate permutations, ca) Thus {a~}~?= a is a partition and, since 

P % =  U PQe~* = 1,.) Q % * =  ~r~ 

it is symmetric. 
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The introduction of spin also presents no difficulties of principle. The Hilbert 
space H~ for such systems is the tensor product of ~2 with various m-dimensional 
Hilbert spaces) 4) Thus, a vector + and an operator .~ on H~ are of the form 

/ \ 
, :  [ } 

\ r ] 

(a,l(q ,1 Vq) "" alT(q, Vq)] 
A 

\ a r l ( q ,  Vq) .-. a r t ( q ,  Vq)/ 

_,~ will be called a local operator if all the a ~ ( q ,  V~) are local operators. The scalar 
T n product is ~=~(Sv , r = ~o �9 + and the expectation value of ~ is d~ �9 ~dr = 

T n a m ~2~,m=~ ( r  ~ r  ). The following manipulations verify that the ensemble decomposi- 
tion still holds: 

(~b ~, a ,~ r  ~) = ~:~jr a ,~ = Z (~:oj~b", a,mr ~) 
j = l  

Thus, 

a ~n 

~=1 5=1 

, .  A ,  = y, (r a.mr m) = (r a.mCj~ 
n,m=l 5=1  j = l  n ~ I  

= F, q'5" A% 
j = l  

= . = q~ . ipa / z  and, writing P~. +j  @j and ~j ~/ j , we obtain 

r �9 Aq, = F, Pj%" A% 
j = l  

It is clear from the above that, for an open set e with zero-measure boundary, 
~Aq~ = A ~ q .  The symmetry considerations follow in an exactly similar manner to 
that described in the spin-free case. 

Thus, the results of the previous work are completely general in the sense that 
they apply to all systems that satisfy the Pauli spinor formulation of nonrelativistic 
quantum mechanics. 

3. L O C A L  OPERATORS IN  T H E  HEISENBERG PICTURE 

It is useful at this point to discuss the quantum mechanical "picture" that will 
be used below. The Heisenberg picturd 5~ has certain advantages over the Schr0dinger 
picture and is the one that will be used. 
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The advantage of the Heisenberg picture is that the Hilbert-space properties of 
quantum mechanics are separated from dynamical properties. In the Heisenberg 
picture, the state of a closed system is described by an element of 5e2 and a set of  
operators. Over time, the wave function remains unchanged and the operators evolve 
according to 

dA/dt = i[H, A] 

where H is the Hamiltonian and the units are such that h ----- 1. Now, statistical mecha- 
nics deals with systems that are identical in their composit ion--that  is, dynamical 
nature--but  that are in possibly different initial states. In order to utilize this feature in 
examining the expectation value, it is important to have this represented explicitly. 
For  this purpose, the Heisenberg picture is ideal since the expectation value is 
(~b, A(t)~) and the initial state ~b is clearly exposed. 

Because the localness of  quantum operators is essential in the following results, 
it is important to see under what conditions A(t)  is a local operator if A(0) is. That is, 
to see when localness is a time-invariant property of observables. It is easy to see why 
this might be true. The Heisenberg equations of motion are a direct analog of  the 
classical equations of  motion for functions of  coordinates and momenta, c6,7) The 
difference is that a / - -  1 times the commutator replaces the Poisson bracket that occurs 
in the classical formulation. Moreover, the classical observables are given at each 
later time by a function of the coordinates and momenta, and so it might be expected 
in quantum mechanics that A(t)  is an operator that can be written as a function of  
the operators r and p = --iV. Under these conditions, Theorem 6c-I 3 indicates that 
A(t) is a local operator if A(t)  is an analytic function of these fundamental operators. 

On the other hand, the general solution to the Heisenberg equations of motion (s) 
is U*(t) A(O) U(t) = A(t), where U(t) is the unitary time evolution operator determined 
by the equation 

i dU(t)/dt -= HU(t)  

with H the Hamiltonian. Since U(t) is a unitary, it is a bounded operator, and so, by 
Theorem 3-I, U(t) is a local operator if and only if  it is a multiplicative operator. 
Thus, quite generally, U(t) is a nonlocal operator and it would appear unlikely that 
A(t)  would be local even if A(0) is. 

Consider, however, the simple case of a free particle. It is well known (D) that the 
evolution operator can be written as 

m - r '  12 -2--~T! f dr' "" exp ( - i31r m l r 
- ~ -  -k 2t ) 

which is an integral operator and certainly nonlocal. Yet the Heisenberg equations of 
motion for the operators r and p have solutions 

r(t) = r --  (it/re)V, p(t) : - - iV  

8 The notation "-I" refers to the corresponding result in Ref. 1. 
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These are clearly local operators and are direct analogs of the classical equations of 
motion. A comparable result holds true for a one-dimensional harmonic oscillator, 
which is solved by 

r(t) = r cos cot -- (iV/mco) sin cot, p(t)  = --rmco sin cot -- iV cos cot 

A number of other examples in which locality is preserved could be given, including the 
N-particle generalizations of these examples. Furthermore, if A(0) = ~n  P , ,  where 
P,~ is a sum of products of the operators r and p, then, since U(t) is unitary, 

A(t) = U*(t) A(O) U(t) = Ut(t) ~, (P.U(t)) = ~ U*(t) P .U(t )  
n 

By inserting U*(t) U(t) =- I between the products in P~,  A(t)  can be written 

A(t) -~ ~ P,~(t) 
n 

where P,( t )  is a product indicated by P~ but involving r(t) and p(t). Thus, in the exam- 
ples above, P,( t )  is a local operator, and because of Theorem 6c-I, so is A(t).  This 
means that, to see that A(t)  is local when A(0) is an analytic function in the operators 
r andp,  it suffices to see that r(t) andp(t)  are local. But dr(t)/dt = p(t)/m, so it suffices 
to have r(t) a local operator. 

With this discussion as a basis, the following is presented as a conjecture. 

Conjecture .  If  H is the Hamiltonian for a physical system and A(0) is a local 
operator corresponding to an observable, then A(t)  determined by the Heisenberg 
equations of motion is a local operator. 

The theorem is not true for H and A(0) arbitrary local Hermitian operators, as 
the following example shows? Let 

(i o 
H 

0 - i  O/~x ] 

Then, 

and A(O) = (~ 10) 

U+(t) A(O) U(t)(y~(x), y2(x)) ~ (y2(x -- 2t), y~(x + 2t)) 

so that A(t)  is certainly nonlocal. 5 
It might be pointed out that the solutions for the free particle and harmonic 

oscillator given above are of the form 

t"~"A(O) 
A(t)  = Z 

~=o n! 

where L a is the so-called Liouville operator (1~ defined by SfA = i[H, A]. In fact, 

4 1 am indebted to Professor R. S. Phillips for suggesting this counterexample. 
5 This is not a general property for "spin systems," and examples for systems with spin for which 

locality is preserved are easily constructed. 
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the convergence to A(t) of this formal series solution is a sufficient condition for local, 
ness to be preserved, since ~C#~A(0) is a local operator if H a n d  A(0) are. 

It must be  stressed that ,  while quantum mechanical operators are local, they 
are not, in general, extended local operators. Indeed, it is easy to see that the natural 
extension of a local Hermitian operator is riot necessarily Hermitian. The Hermiticity 
of the differential operator, for example, depends critically on an application of Gauss' 
theorem. A function of the form seEr where E is an open set and r allows an applica- 
tion of Gauss'itheorem, will not generally satisfy the hypothesis of the theorem. This 
is so because seer will in general be discontinuous across the boundary of E. 

This l ack  of Hermiticity, however, is unimportant because the natural extension 
of the local quantum operator A will occur only formally in the work which follows, 
What is important is that ~ = A on the domain of A and that .g is Hermitian on 
this domain. 

4. H I C R O C A N O N I C A L  P A R T I T I O N S  

In order to connect the ensemble decomposition of the previous paper with 
physical ensembles, it is necessary to introduce an initial c0ndition for the functions 
% -- se~jr ~ r  II. This means; in terms &the  discussion in the introduction, that it is 
necessary to guarantee that each function q~; contains the same macroscopic informa- 
tion as r Thus, it must be true at time t = 0 that (qb, ~(0)%) ~ (r A(0)r for all 
j and all operators A referring to macroscopic properties. This is the usual physical 
requirement that an ensemble be composed of systems that have the same initial 
preparation, i.e., that the ensemble be representative. In order to obtain this initial 
condition, special partitions, called microcanonical partitions, are introduced. 

Definition. A mieroeanonieal partition is a partition formed in the following 
manner. Let {Ak}~=z be a countable partition of V into open cubes? Divide each set 

co  

Ak into X2 congruent subcubes called Bkj, j = !, 2,.,., X2. Define % = 0~=z Bkj �9 
It is clear that a microeanonical partition is a partition, since each a: is open, 

and 

~ j n ~ =  U U B,.~nB~,1~= ~ for j = ~ k  

The microcanonical partition has two properties that are of interest for a large 
system. First, ,~(~;) = A(V)/X2, which is true by construction. Second, for every macros- 
copic subset S of V and each j, it is approximately true that A(S n at) = A(S)/g2. This 
means that (in a coarse-grained sense) the points of each set at are dispersed in an 
unbiased fashion throughout V. Indeed, it seems plausible for any function f ~  s 
that J" ~JdA  ~ ffdA/X2, for some microcanonical partition. The truth of this con- 

6 Such a partition exists by corollary I'L 



240 Joel E. Keizer 

jecture is the content of Theorems 1 and 2 and it is precisely this result which allows 
an initial condition to be placed on the ensemble {gJ}. In other words, when 
constructed from such a partition, each function ~0~ contains all the initial macroscopic 
information contained in ~. 

Before proving Theorems 1 and 2, it is necessary to define a refinement of a 
microcanonical partition. 

Definition. Consider the collection of sets {Ak} which occurs in the definition of 
a microcanonical partition {c9}. Another microcanonical partition {(r~*}~=~ is called 
a refinement of {~j}f=l if the collection {Ak*} used to define {(rj*} has the property that 
Ae* CAr  for one and only one Ar ~ {A~}. 

Theorem 1. For any measurable set B C V, any E > 0, and any microcanonical 
partition {cr~}~?=t, there exists a refinement of {crj}, called * a {~r~ }~=1, with the property 
that [ A(B)/s -- A(~r~* c~ B)] < E. Furthermore, if {~**}~=x is any refinement of {crj*}, 
then [ A(B)/g2 -- A(~** n B)[ < ~. 

Theorem 2. Let {f~}~=l be any finite collection of functions in L~,,(V), 1 <~ p < oo. 
Then, for any ~ > 0, there exists a microcanonical partition {crj}~=l such that 

for j = 1, 2,..., 12 and all f~. 
The proofs of these theorems are long and technical and are given in the appendix. 

The importance of Theorem 2 is that it asserts the existence of a partition that "coarse- 
grains" any finite collection of functions in the sense that 

f ~ A  da ~ f A da/O 
for all j and k. 

Since it has been shown earlier that only symmetric partitions are of physical 
interest, it is necessary to prove an analog of Theorem 2 for symmetric partitions. 
Actually, Theorem 2 is almost sufficient by itself, since only expressions of the form 
f ~b*Aiq~ dh, where As is a symmetric operator, are needed in quantum mechanics. 
Butf~ = ~b*Adb is symmetric under permutations for both fermions and bosons, and 
so only the analog of Theorem 2 for symmetric functions is needed. 

Corol la ry  | .  If the functions in Theorem 2 are symmetric, then there exists 
a symmetric partition such that the conclusions of Theorem 2 hold. 

Proof. Since f~ is symmetric 

V Upa?Up Pe~ U1 
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where U~ is defined in the section on symmetry. Thus, apply Theorem 2 to find a 
partition {~j*}~=~ such that 

ButJ~ is symmetric, so 

Vz ue 

and 

= f = f N! f ux Pe~ up p~r v 

= f v  ~ue~P,*A dA 

since Paj* o P'a~.* = ~ if P :fi P' .  Letting aj = L)~'~ Pa~*, it follows that 

and similarly that 

Thus, 

f aa = f / ,  aa 

and {O'j}f= 1 is a symmetric partition as verified above. [] 
The utility of this result in coarse-graining the ensemble decomposition to give 

an equally weighted average and the appropriate initial condition is shown in the 
next section. 

5. A J U S T I F I C A T I O N  O F  ENSEMBLES I N  S T A T I S T I C A L  M E C H A N I C S  

The problem to which this series of papers is addressed is the nature of macros- 
copic states in statistical mechanics. A state, of course, is some mathematical construct 
which contains sufficient information to give a characterization of a system of interest. 
Although it has been assumed that every closed system is described by a wave function 
r in an ~2 space, this is useless for predictive purposes since r is unknown. What is 
known is only that ~b is an element of a collection of wave functions in La~ all of which 
describe systems which at an initial time are identical to the system of interest. This 
characterization for a large system can be formalized in the following fashion. 
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Consider a large, dosed~ N-particle system initially in the state ~, It is assumed 
that, since the system is large, it can be characterized initially by a collection of opera: 
tors {Al}~=lwith expectation values @, Ai~) = a~. The characterization is taken to 
be detailed enough so that, if a similar system is in the state 5o and (% A~SO) ~ a~ 
for all i, 7 then the two systems cannot be distinguished maCroscopically. This means 
that the collection of operators {A~}~=z describes all the macroscopic ProPerties of the 
system, and is reasonably called a complete macroscopic description. 'The set of  all 
initial states s compatible with such a complete description is called S~.  

It is clear that the macroscopic state of a system is bound up in the collection S~r, 
since all systems described by a vector in S N are initially indistinguishable. It is possible 
that no such "state" can be attributed to the collection SN. This would occur, for  
example, if systems which were initially identical evolved over time into distinguishable 
systems. On the other hand; the characterization by Sze may be corr/p!ete enough so that 
no essential differences can be  observed i n t h e  temporal behavi, or of systems with 
wave functions in SN �9 These kinds of preparations have the important characteristic 
that the macroscopic behavior is independent o f  the microscopic behavior of the sys- 
tems and are preparations that are useful experimentally. 

The developments which followuse the mathematical ideas of the previous sections~ 
to obtain a density operator "state" for a large system characterized by certain collec- 
tions SN. While the method o f  at tack involves the. notion of local operators, the 
physical idea involved in the mathematics should not~be forgotten. The idea, again, is 
that a single measurement of a macroscopic property is essentially a measurement on 
an ensemble of systems derived from local portions of the wave function. The ensemble 
arises, not from separate collections of particles in three-space, but disjoint portions 
of configuration space. 

5.1. Ensembles for Large Systems~ 

Two complete descriptions will be required in the developments below. The first 
description is defined by {Ai}~.~=l, {ai}~=l,, and S N as described above for the N-particle 
system. The second description is fictitious; and  for it, S~v is the set of all states of the 
N-particle system that verify (~b, Adb ) ~ ai. 

In order to write down the ensemble decomposition in general form, i:t is necessary 
to use the conjecture concerning the time preservation of localness. Since the conjec- 
ture has not been proved, what follows is strictly valid only when localness is a time 
invariant. With this in mind, it is possible to write the expectation value of any of the 
operators Ai for any state ~b in S~r as 

t2 

@, Ai(t) ~b) -~ ~ (%,  Ai(t) %) P~ 
5=1 

where Pj = II ~:o~b [I 2 and the functions 5Oj ---- ~@b/[ I ~@b f[ depend only on the parti- 

7 The symbol ~ means equality within experimental error. 
8 The word "state" loosely refers to a function in .s Of cottrse, the function must be in the domain 

of the operators which act upon it and have the appropriate permutation symmetry. 
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tion {or;). To remove some of the arbitrariness from the functions q~j, a special 
microcanonical partition is chosen. By Corollary 1, there exists a symmetric partition 
such that 

f ~:oi~b*As(0) ~b a)t ~ (1/~) f ~b*A,(0) ~b a,~ = ai/$2 

and 

for all i and j. But 

and 

,~/~ ~ f ~o,r ~ ,~ = f ~r162 r d~ = II ~ r  II ~ (w;, ~r ~ )  

~:o~,,r d,~ = II r  ~ ~ 1/~ 

Hence, 

and Pj "~ 1//2. For this partition, the ensemble decomposition becomes 

(~, ~s(t) ~) ~ T, (~;, ~4i(0 ~j)/s~ (1) 
j = l  

with the initial condition that (5oj, e/s(0) ~0~.) ~ as, i.e., q~. e gN. 
Equation (1) is the essential result of this section and expresses the expectation 

value of any operator As for a pure state ~b as an equally weighted average of states 
in ~qN. Since no restrictions have been made of the system, Eq. (1) applies to any system 
contained in a bounded region of space. 

In order to see the relationship between Eq. (1) and the usual microcanonical-type 
ensemble for large systems, both the nature of the initial preparation S~r and the struc- 
ture of the functions q~j must be examined. In particular, it is necessary that the "initial" 
sets of wave functions, SN and S N , be related in some fashion. Since ~qN is strictly 
larger than SN, the only realistic requirement is that there exist a subspace XN C SN 
that is "almost all" of both SN and SN. By this, it is meant that, if ~r is the projector 
on XN, then Ii ~r~b ff ~, 1 for ~b in SN or S~.  It is expected that this condition might 
hold for large systems and it is roughly equivalent to the notion of "phase cells" 
commonly used in ergodic theory. (11~ 

If  such a large subspace of S N and ~q~r exists, then Eq. (1) can be reinterpreted as 
an equally weighted average over states in S N since ~s(t) = Ai(t) on S~r However, 
this is not yet equivalent to the Gibbsian ensemble because there is no certainty that 
q~. is appreciably different from ~b. In other words, by coarse-graining configuration 
space to ensure that ~o~. is in S' N , it may be necessary to make ~vj essentially the same 
as ~b. That is, ~oj and ~b might have essentially the same components in a basis. Thus, 
Eq. (1) would be trivial because each ~j would be microscopically identical to ~b. 

To see for large systems that the (1) ensemble average is not necessarily trivial, 
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it is necessary to look at the construction of the functions ~j in detail. In particular, 
the size of the open cubes {A~}k~=l from which the partition {crj} is constructed is very 
important. Since only coarse details are required for a macroscopic preparation, it 
should suffice (when choosing to partition that makes q~j ~ •N) to take the edge of a 
cube Ak to be microscopically large but macroscopically small. Thus, the cube A~ can 
reflect a great deal of microscopic variation, but little variation on the macroscopic 
scale. Since each function % is constructed from only a small part of ~b on Ak, the 
functions ~p~ should be microscopically distinct from each other and from ~b. 

To get an idea of the order of magnitudes involved in this construction, take the 
edge of a cube Ak to be 10 -4 cm and divide Ak into subcubes Bkj with edges 10 -6 cm. 
For large systems, A~ should correspond to uniform macroscopic properties while the 
cubes Bej should reflect great microscopic differences. In addition, for this case, the 
number of members of the partition is s = 1003u, which is the order of degeneracies 
for large systems. ~12~ Thus, it is plausible that the coarse-graining of configuration 
space can be balanced between macroscopic uniformity and microscopic diversity 
for the functions q~j. 

This discussion can be formalized by making the following assumptions: (i) A set 
XN, as described above, exists with a basis {0n}W=l and (ii) for any ~b ~ SN, a partition 
exists that randomly distributes the functions % throughout S~.  Using these assum- 
tions, Eq. (1) becomes 

W IV f2 

(4, A~(t) ~b) ~ Z Z (Ore, Ai(t) 0,) Z C*,~Cj,/D 
~=I n=l j=l 

where C~m ---- (0~, ?j) and small terms not in XN have been neglected. Because of 
assumption (ii), the coefficients of the cross terms in this equation vanish and the 
diagonal coefficients, ~j=~ I Cj~ 12/12, are equal. Finally, the approximate normaliza- 
tion condition ~=1 Iv [~= = Y~,~=I l Cjm 12 implies that Y.~=I I C~-m ]~/12 1/W, and the 
above equation reduces to 

IV 

(~b, Ai(t) ~b) ~ Z (0,~, Ag(t) O~)/W 
rv~=l 

which is the generalized microcanonical-type average of Gibbs'. 
It is worth emphasizing that the "derivation" above does not give a direct verifi- 

cation of the equilibrium microeanonical ensemble. Indeed, since a macroscopically 
complete set of observables has been used to define SN, the results are a quantum 
analog of Lewis' results in classical ergodic theory. (lal Thus, to verify that the above 
ideas lead to the equilibrium microcanonical ensemble, it would be necessary to 
verify assumptions (i) and (ii) above. This is no easy task and is somewhat like the 
situation in classical ergodic theory where either metric indecomposibility or a lack of 
motion constants other than the energy must be shown. (~4) 

6. S U M M A R Y  

The developments of this paper are an attempt to carry out the physical idea 
presented in the introduction; namely that ensemble averages arise in a natural way 
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from redundant information carried by pure state wave functions. This redundant 
information is carried by projections (pj of the function ~b onto disjoint regions of 
configuration space. Because operators corresponding to observables are "local," the 
projected wave functions ~v~- are formally independent of  one another and can be used 
to form an ensemble average. By forming the projected wave functions appropriately, 
i.e., "coarse-graining," it is shown that the functions q~; can be made macroscopically 
the same as ~b and that the functions can be given equal weights in the average. This 
is the central result of this paper and provides a new point of view for understanding 
ensembles. For  large systems, a heuristic argument is given which suggests that the 
coarse-graining can be performed so that the functions in the ensemble {(p~} are 
microscopically different from each other and from ~b. If  for such a decomposition the 
functions ~oj are "randomly" distributed throughout the state space of the initial 
preparation, then it is shown that the generalized microcanonical average of Gibbs' 
is valid. These arguments make it clear how in specific cases a mathematical attack of  
the justification of ensembles would proceed. 

A P P E N D I X  

Proof of T h e o r e m  1 

Case 1. The proof  is in two steps. The first step proves the theorem for any 
open set I that has zero-measure boundary, i.e., A(~I) ~ 0. For such a set, a stronger 
statement holds than in the general case, namely equality holds in the conclusion of  
the theorem. 

Let {A~} be the collection of open disjoint cubes that defines {~-}. Then, let 

K 1 = {Aje{Az:}: A s t ' 3 I =  Z ~} 

/(2 ={A~e{Ak}: A ~ n I = A ~ }  

K3={Aj~{Ak}: Ajf~K1 or /(2} 

Clearly, {Ak} = /(t t9 /(2 U/ (3  and the collections are disjoint. A collection 
of open cubes, K4, will be constructed from the elements of /(3 such that 
{A~*} = / ( 1  t3 K2 v / ( 4 .  

Let A~ ~ K3. Since/,  (I-)', and ~I are disjoint and I • (I-) '  u ~I = V, it follows 
that A~ = (Am n I) U (A,, ~ (I-)') U (A,~ n ~I). Consider the two disjoint, nonvoid, 
open sets Am t~ I and Am n (I-)'. Each of these can be approximated by collections 
of open disjoint cubes, 1 2 {A~j}~ and {A~j}j, respectively, as noted in Corollary 1-I. 
Define/(4 = {A~j : Am ~ K3} u {A~,j : A~ ~ K3} and then let {A~*} = Ka kJ K~ u K 4 . 

Now, K~ and/s are countable collections of open cubes and K4 is clearly such a 
collection, so {A~*} is a countable collection of open cubes. By construction, A~* C A~ 
for one and only one k and, moreover, A~* n A~.* = ~ i l k  =~ r. 

The collection {~j*} is constructed from the sets {Ak*} as prescribed in the defini- 
tion of the microcanonical partition. Thus, to show that {era* } is a microcanonical 
partition that refines {~}, it is only necessary to check that A((U~ A~*)' c~ V) = 0, or 
equivalently, that A((U~ A~*)' t~ U~ A~) = 0. But this is clear since the only points in 

822/2/3-3 
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U,., A~ that are not in 0,. A~* come from a countable union of zero-measure boundaries 
of open sets. Thus, {aj*} is a microcanonical partition that refines {as}. 

In order to see that this is the desired refinement, let B~*j be the contribution to 
as* coming from the cube Ak*, i.e., aj* = Uk=l Bko. Then, by construction, either 
(a) A~* n I = ;3 or (b) Ak* R I = Ak*, and in all cases (c) A(Bk*s) = A(Ak*)/~. 

If  (a) holds, then Bk*j n I = ~ and 

If  (b) holds, then B* c~ I ~ B~* and (c) implies that 

Thus, for all k and j, A(Bk* j n I )  = A(Ak* n 1)/.(2. Hence, 

A(as* c~ I) A ( F  * ) = B~ n ~ = Z ~(B:. n ,0 
/c 

k / c  

But A((U,0 A,~*)' n I) ~ A((Uk A~*)' rh V) = 0, so (d) A(aff n I) = ~(I)/[2. 
Since for any refinement of{as*) the relationships (a)-(c) hold, it is clear that the 

refinement verifies (d). 

Case 2. Let B C V be an arbitrary measurable set. Choose a sequence of open 
sets, {U~} with B C U, and A(U~) < A(B) + �89 Furthermore, for each set U~, 
select a finite collection of open disjoint cubes {oJ~,~}~ with oJ,~ C U, for all m and 
such that o~ ~ Um o~m satisfies A(o~,' n u~) ~ �89 Thus, A(U~) ~ A(c%) + �89 
and A(oJ~,) ~< R(U,). The possibility of doing this has been discussed in the proof of 
Theorem 3-I. 

Take any microcanonical partition {as}~= ~ and any ~ > 0 and choose some n so 
that �89 < ~. For w~ select a refinement that satisfies A(as* c~ o~,) = A(o~,)/~. This is 
possible by case 1, since o~ is a finite union of disjoint cubes. 

To obtain estimates for A(B n a~*), write first 

B n as* C U,., n as* = (oo. L~ (co~' n U~)) n as* 

= (a~*  n o.,,) u (as*  n ~,~' n u.) 
Thus, 

A(Bnas*)  

~< 

~< 

~< 

�9 X':'J* n o~.) § ,~(~j* n ~,,~' n F,~) 

.~(aj* n ,o.) + ,~(o~s n U~) 

~(~,,,)/~ + �89 

~(Un)/~" ~ _~_ l n + 1  

(h(B) + �89 + ~-+~ 

~(B)/~ + �89 (2) 
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A second estimate comes from 

~ n (rj* C U,~ n ~r~-* C (B u (B' n U,)) n cry* = (%-* n B) L.) (o-j* n B' n U,,) 

Thus, 

~(~o,~ n ,~j*) ~< ,~(B n ,~,.*) + ,~(B' n U,~ n ~*)  

o r  

Therefore, 

Thus, 
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A(o).)/s'2 ~ ,~(B n r + �89 But ~(B) -- A(o~,,' n B) = ),(co~, c~ B) ~</~(~o.). 

O(B) -- a ( ~ '  N B))/n ~< ~(B n ~j*) + �89 

;t(n)/n <~ ;t(~,,~' n B)/X2 + ;~(B n ~j*) + �89 

< ~(B n ~;*) + }~ (3) 

Hence, it follows from Eqs. (2) and (3) that 

Moreover, for any refinement of {~J*}~?=x, it is true by case 1 that h(oJ~ n %**) 
A(oJ~)/O. Thus, the equalities and inequalities above are valid for the refinement and 
it remains true for &r * * ~  that I ,~ (B) / f2  - -  ,~(B n (r~*)l < e. [] j Yj=l 

Proof of Theorem 2 

For any f2 > 1, any measurable set %-, f~ e 2~a~, 1 < p < co, and & ~ ~ 
following inequalities hold: 

< rt ~o, H< I l i , -  ,, f), + o / n ) , f ,  - ,, tl, II ~fl , ,  + If. L,~, d~ - f (,,in) d~ 

the 

(4) 

(5) 
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where II " ll~ is the ~ norm and p' -~ p / (p-  1). Equation (5) is a consequence of 
HSlder's inequality. (~) If p = 1, then it follows from Eq. (4) that 

f ~z~f/d~ - -  (1/~r~) f f /  d~ I ~'~ [If/ - -  ~i ill ~- (1/~)l l f~ - -  * Ill 

+ f ~:~s, dt  -- (1/~2) f s~ cl~ (6) 

Now, given any 1 ~< p < o% choose for each fi  a simple function such that 
lift - sr I!~ < e/3(N ~v I[~' -5 1). This is possible because the simple functions are dense 
in s ~)  Thus, both Eqs. (5) and (6) imply that 

f ~,j~dA--(1/D) ffid;t ~ < 2 e / 3 §  f ~jsid~--(1/f2) f sidit] (7) 

6~ , Writing s~ = 5~k=~ k~:A~, where [ C~i I < ~ and A~r C V and Akr is measurable, 
Eq. (7) becomes 

f?> , f  se~jfi dA -- ( l / D ) f  J'~ dA II < 2e/3 + ~kr ~eA,]~) dA 
/r 

= 243 + ,[~[ ~,~(A(~ r~ & i )  - ~ ( & D / ~ )  

n(i) 
k = l  

Now, select a partition {~j}~=z such that, for all refinements and each j, k, and i, 

n(i) 

Thus, 

~(i) ( ~(i) ) 
k = l  k = l  

(8) 

It is possible to pick such a partition, since one can be picked for An- - say  
{aj*}~=l--by Theorem 1. Also, a refinement of {aj*}~=i--say {~**}~=z--can be chosen 

5~*}~ refines {crj*}~?= 1 , by Theorem 1 so that Eq. (8) holds for Ax~. But since t j j=~ 
sa  ~n(i)~ it is Eq. (8) still holds for A~I �9 By repeating this process for all the sets tl~isk=~,i=~, 

clear that the proper microcanonical partition can be obtained. [] 
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